CEWES MSRC/PET TR/98-31

MPICH on the Cray T3E

by

L. ShaneHebert
Walter G. Seefeld
Anthony Skjellum

DoD HPC Modernization Program CEWES MSR G]

Programming Environment and Training

rer [Niichols

05h00798

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be

construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

MPICH on the Cray T3E

L. Shane Hebert

Walter G. Seefeld ~ Anthony Skjellum

{shane,walt,tony } @aurora.cs.msstate.edu
High Performance Computing Laboratory
Engineering Research Center
Mississippi State University
Mississippi State, MS 39762
http://www.erc.msstate.edu/labs/hpcl
March 27, 1998

Abstract

The authors describe their efforts to sup-
port the ubiquitous MPI programming model,
based on the MPICH 1.1 implementation, on
the Cray T3E. Discussion of porting issues,
performance issues, and protocol decisions are
offered. Future work opportunities and chal-
lenges are also reported.

Keywords: parallel computing, message passing,
Cray T3E, MPI, MPICH

1 Introduction

Message passing has been used for many years
to program multicomputers and clusters of
workstations. In recent years, the Message
Passing Interface (MPI) Standard [1] Appli-
cation Programmers’ Interface (API) has be-
come the de facto standard for writing portable
message-passing programs. A portable, public
implementation of this standard, MPICH [2],
written jointly by Argonne National Labora-
tory and Mississippi State University (MSU),
has been ported to a wide variety of comput-
ing systems. Among these ports is one for the
Cray T3D which was first written by Brightwell
from MSU [3] and later modified to conform to
MPICH’s second generation Abstract Device
Interface (ADI-2) by Shane Hebert. Although
the Cray T3D and Cray T3E are similar ma-

chines and are source-code portable, there are
optimizations in the T3E architecture that can
be used to write a more optimal port of that
device code for the T3E.

1.1 MPI

The MPI Standard, defined by the MPI Forum,
has become the de facto standard for writing
message-passing programs [1]. The standard-
ization effort was started in 1993 and the stan-
dard was approved by the MPI Forum in 1994.
Since then, many vendors of multicomputers,
shared-memory computers, and clusters have
provided proprietary implementations of MPI
for their systems. Several public implementa-
tions are also available [4, 5].

MPI allows programmers to write portable
parallel message passing program code. Be-
cause the programs are portable, software writ-
ers can target multiple platforms easily, most
often simply by recompiling the source code on
the target platform. This allows MPI applica-
tions to be useful long after the platform that
was originally used to develop the code has be-
come obsolete. Applications written on one
system can be easily ported to a new comput-
ing system that is purchased to replace an ob-
solete system. The program can be ported even
if the newer system is not otherwise compati-
ble with the older system in other ways such as
interconnection infrastructure or binary com-
patibility.

1.2 MPICH

MPICH is a public, portable implementation of
the MPI Standard that was developed in par-
allel with the standardization effort and was
originally released at the same time as the
standard. It was written with join effort from
Argonne National Laboratory and Mississippi
State University. Since then, it has become the
starting point for many vendors’ implementa-
tion efforts and has also been ported to many
of those same platforms. MPICH is available
for public download. As a consequence, it has
been used by many groups, both research and
commercial, to port an MPI library to a wide
variety of computing systems. The port of in-
terest for this project is the MSU Cray T3D
port with its later modifications.

1.3 Cray T3E

The T3E is a recent addition to a family
of distributed shared-memory multicomputers
manufactured by Cray [6]. This multicom-
puter is based on the commodity Alpha 21164A
microprocessor first manufactured by Digital
Equipment Corporation (DEC) [7]. Each node
module of the T3E contains four microproces-
sors, each with its own local bank of DRAM
and high-speed network direct memory access
(DMA) interconnect. The node modules of
the T3E are connected by a toroidal topology.
This allows multiple paths to nodes for redun-
dancy and congestion relief. The torus links
provide a theoretical bidirectional peak of 480
Mbyte/sec bandwidth between node modules
[6]. Communication between and among nodes
is accomplished by using distributed shared-
memory primitives to push and pull data from
one node’s memory into another node’s mem-
ory using the high-speed DMA hardware of the
interconnect.

2 Porting MPICH to the Cray
T3E

The Cray T3D and the Cray T3E are nearly
source-code portable. This means that, with

the exception of a few library calls, programs
that can be compiled and run on a Cray T3D
can be recompiled and run on a Cray T3E with
little effort. Consequently, after omitting some
T3D specific code, the existing T3D device '
works well on the T3E. However, architectural
optimizations can be used to improve the T3E
device. In order to explain the T3E device
code, a comparison of the T3D to the T3E is
required.

2.1 Comparing the T3D and T3E

There are three major optimizations to the
T3D distributed shared-memory architecture
in the T3E that can be advantageous to use
in the T3E device code. The three defi-
ciencies of the T3D are discussed in detail
by Brightwell [3], namely asymmetry of data
transfer performance, address validation, and
cache-coherency. Each of these is summarized
here.

The Cray T3D and T3E computers are both
distributed shared-memory computers. To
communicate between processing nodes, the
shared-memory API (shmem library) is used to
explicitly transfer regions of memory from one
node to another. The shmem API contains two
types of functionality that are of main concern
for the MPICH device code — push and pull.
The push functionality is accessible through
two functions: shmem put and shmem put32.
These two functions perform nearly identical
tasks. The difference between the two is the
granularity of the addressing and data size han-
dled by the function. The shmem put function
requires that the data to be sent be aligned on
a 64-bit word boundary and be a multiple of
64-bits in length. The shmem_put32 function
requires only that the data be aligned on a 32-
bit word and be a multiple of 32-bits in length.
Analogously, the pull functionality also exists
in the 64-bit and 32-bit varieties. These func-

!The MPICH source code is divided into several lay-
ers for portability. The topmost layers of the software
are portable across most systems but the bottom-most
layer, the device layer, is specific to each particular ar-
chitecture.

tions are shmem get and shmem _get32. There
are other functions available as well to handle
short, long, longlong, double, long double, 128-
bit, and complex data types. We found these
functions to be of similar performance to the
simple 32- and 64-bit varieties so we do not
discuss them further here.

From empirical testing, the Cray T3D
has an asymmetry in these two modes of
data movement. Out of a theoretical max-
imum bandwidth of 130 Mbytes/second, the
tested push bandwidth of this system is 110
Mbytes/second. However, the tested pull
bandwidth is less than one-third of the tested
push bandwidth at 30 Mbytes/second. The
MPICH Cray T3D device can achieve 107
Mbytes/second using the three-phase push
protocol. The T3E, on the other hand, is
much more symmetric. The pull functionality
is nearly the same bandwidth as the push func-
tionality. Both supposedly can achieve near
the peak 480 Mbytes/sec of the interconnec-
tion network. However, in practice, this is not
the case as shown in Figures 1 and 2. We will
discuss these figures later.

The second obstacle to overcome on the
T3D involves the virtual memory subsystem
of the platform. A design limitation of the
T3D does not allow a process on one node to
access address regions in another node unless
the memory locations in question are mapped
into the virtual memory space of both pro-
cesses. The obvious way to avoid this problem
is to use the shared memory allocation func-
tion shmem alloc which enforces the design by
mapping the shared memory to the same vir-
tual memory address region for all the pro-
cesses. This seems to solve the problem but,
for MPI, this is a considerable hurdle to over-
come because user data in MPI is not required
to be in memory allocated from this special
memory. The operating system of the T3E,
however, does not require that the target ad-
dress region be mapped into the local process
space in order to use either the push or the pull
data movement functionality. This enhances
performance in itself.

The last obstacle is the matter of cache-

coherence. The T3D does not provide cache-
coherence for the processor for remote memory
operations. This requires the implementation
to manually invalidate and flush the cache or
to simply turn the cache off completely. The
T3E, on the other hand, does provide cache-
coherency. This is again a performance boost
for MPI applications.

2.2 Changes to the T3D Device
Code

The improvements in the Cray T3E architec-
ture allow several direct improvements to the
T3D device code that both decrease latency
and allow the capture of a higher percentage
of the peak bandwidth of the T3E.

Because of the asymmetry in the push and
pull modes of the T3D, the original and sec-
ond implementations of the MSU Cray T3D
MPICH device code use a three-phase push
protocol for messages larger than 256 bytes
[3]. These phases are the basic request-to-
send/clear-to-send (RTS/CTS) protocol. In
this protocol, the sender first notifies the re-
ceiver that a message is available for sending
(RTS). The receiver later notifies the sender
when the data for that message can be sent
(CTS). Afterwards, the sender can then push
the data directly into the user’s buffer to com-
plete the third phase.

For a distributed shared-memory architec-
ture, this protocol can include some optimiza-
tions to simplify protocol demultiplexing. For
example, the CTS packets and the actual
transmission of the data do not have to be in
the form of seperate packets over the communi-
cation network. The receiver can simply write
to specified locations the information that is
required to complete the data transfer oper-
ation. The sender can examine this informa-
tion without protocol overhead and complete
the sending of the data by directly placing the
data in the desired buffer on the receiving node.
This satisfies the MPI Progress Rule [8] in that
the transmission of data can occur even in the
absense of calling the MPT Wait and MPI Test
function calls.

From empirical testing, we found that there
is an asymmetry in the push and pull modes of
the T3E as well. However, as Figures 1 and 2
show, our bandwidth test results using various
shmem primitives available on the T3E found
that the pull mode has higher bandwidth than
the push mode, opposite of the bahavior of the
T3D. We found the peak obtainable bandwidth
using the push mode is 299 Mbytes/sec (Figure
1) and the pull mode is 327 Mbytes/sec (Figure
2) . This performance difference may be at-
tributed to cache-coherency protocols used on
the T3E nodes. As each block of data is writ-
ten during the push from the source, cache-
coherency on the target must be preserved
piecemeal. Using the pull method, the mem-
ory areas that must be invalidated are known
at the beginning of the function call and all
the cache-coherency issues can be handled in
one operation before any data is transferred.
Although this asymmetry was not taken into
account in the original design of the port, it
works in our favor to enforce the original de-
sign of using the pull mode on the T3E for
MPICH message passing.

We performed experiments with many of
the various shmem functions and found that
within the functionality of each mode, the per-
formance differences between any two of the
functions that are differentiated by the ad-
dress alignment and transfer granularity was
less than 1%. This enabled us to use the 32-bit
granularity functions to minimize the penalties
for misaligned transfers and limit the penalties
to only transfers that are not 32-bit aligned
and multiples of 32-bits in length. These re-
quirements should encompass the majority of
MPI messages in most applications. However,
minimizing these penalties is an area for future
work.

The behavior of the push and pull models of
data movement on the T3E allow a much more
simple protocol design that incorporates both
the push and the pull models for data delivery.
On the T3D, we could only use the push model
in order to achieve acceptable performance. In
the new model for the T3E, the RTS is given to
the receiving process which then pulls the data

Bandwidth (Mbytes/sec)
o
<]
&

11 15
Message Size (2"n bytes)

Figure 1: Cray T3E Push Mode Bandwidth as
a function of Message Size

350

325

300 -

275

250

225

200

175 -

150

Bandwidth (Mbytes/sec)

125

100

75

50

25

o .
3 7 11 15
Message Size (2"n bytes)

Figure 2: Cray T3E Pull Mode Bandwidth as
a function of Message Size

into the user buffer without the requirement of
the additional CTS to allow the sender to push
the data. Even ignoring the additional band-
width capability of the T3E network, this sim-
plification of the protocol has both lowered the
latency and increased the bandwidth of mes-
sages larger than 256 bytes. Also as a result of
this simplification, the progress engine of the
T3E port to MPICH is much simpler than the
progress engine of the T3D port. This new
progress engine for the library incurs less over-
head to complete data transfers, thus lowering
latency even more.

The obstacle of address validation does not
initially seem to be a problem because the
shared memory allocation routine will ensure
that memory is mapped ideally and is readily

usable. However, MPI does not require that
all the memory that the user desires to use be
allocated in this way. A user may use mem-
ory allocated in any way, even from the heap
by a call to malloc. This poses an interesting
problem for the device implementation. The
solution to this problem is to trick the operat-
ing system into mapping the remote memory
address range into the local process when the
target address is not already mapped into the
local process virtual address space. This re-
quires that, every time data is to be sent, the
local process must ensure that the target ad-
dress range is mapped into the local address
space. If the memory is not already mapped
into the process space, the local process must
force the mapping to occur before the trans-
mission of the data and, after the data is sent,
it must unmap that range. The MSU Cray
T3D port uses a trick with the process stack
to map the target address range into virtual
memory when necessary [3]. This, of course,
is a penalty to every message greater than 256
bytes in length. The optimization here is to
avoid the calls to check the address space map-
ping and thereby avoiding the calls and over-
head to actually map the memory region into
the local process space that would be required
on the T3D.

The last issue of cache-coherency is com-
pletely negated by the cache-coherency present
in the T3E. On the T3D, in order to ensure
that the processor had copies of the correct
data in its L1 cache, the cache could either
be manually managed using flush and invali-
date calls or it could be simply disabled us-
ing system calls. When the programmer issues
an MPI call to send data, the MPI send func-
tion must ensure that the data being sent is
actually flushed out of the cache and into the
appropriate memory locations in main mem-
ory. Because of the cache-incoherent behavior
of the computer, without the flush, it would be
possible for the receiver of that data to receive
stale or invalid data from the sender. Simi-
larly on the receive side of the operation, ev-
ery MPI receive function must invalidate the
address range of the desired data location or

risk the chance of the cache holding data from
previous computations which would not be up-
dated by the reception of the data. These is-
sues require the overhead of cache management
calls in each and every send and receive call in
the MPI library. This penalty is exacted even
if it is not needed because the library writer
can never be sure if the specified data address
locations are cached or not. Of course, if the
second option is taken - disabling the cache -
the issue is resolved at the expense of overall
program execution speed. Simply stated, the
code that ensures that caches are flushed or in-
validated at the appropriate times on the T3D
is not necessary on the T3E and can be omitted
from the T3E device code.

3 Performance

The performance for an MPI implementation is
typically characterized by its latency and band-
width measurements. The latency for a zero-
length message is a basic measure of overhead
in the MPICH port. A message of zero bytes
consists of only the MPICH packet header and
no data. The time for this packet with no data
to be sent from the user code of the sending
process and be recognized by the user code
of the receiving process is measured from just
before the MPI_Send function is called in the
sending process until the MPI_Recv function re-
turns in the receiving process. The program
that is traditionally used to measure latency is
called “ping-pong” because it bounces a mes-
sage back and forth a number of times from the
one process to the other. The latency calcula-
tion is measured by this program as being half
of the average time taken for a zero-byte mes-
sage to make the round trip. The latency for
short messages on the T3E is shown in Figure
3. As this graph shows, the latency for a zero-
length message for our port is 7 microseconds.

The bandwidth test is very similar except
that it bounces messages of increasing size be-
tween two processes. The average time taken
for a message to bounce between processes
some number of times divided by the num-

10

Latency (microseconds)

. . .
128 160 192 224 256
Message Size (bytes)

L L L
0 32 64 96

Figure 3: MSU Cray T3E MPICH Latency as
a function of Message Size

ber of bytes sent in each bounce, twice the
buffer size, is considered to be the average
bandwidth for that message size. The band-
width for our port is shown in Figure 4. Tradi-
tionally, the asymptotic bandwidth of the port
is used to represent this performance measure.
For our port, the asymptotic bandwidth is 321
Megabytes/sec. This falls short of the stated
480 Mbytes/sec peak performance of the T3E
[6] by 33%. However, as Figure 2 shows, the
maximum bandwidth that we could obtain was
327 Mbytes/sec. Using this empirically ob-
tained peak, we achieved 98% of the obtain-
able bandwidth of the platform. The MPICH
library computation overhead accounts for the
other 2%.

350

325

300 -

275

250 -

225

200

175 |

150 |

Bandwidth (Mbytes/sec)

125 |

100

75

50 [

25

0

f
3 7 11 15
Message Size (2"n bytes)

Figure 4: MSU Cray T3E MPICH Bandwidth
as a function of Message Size

4 Conclusions

The MPICH device code that targets the
Cray T3E can be optimized because the plat-
form corrects some of the deficiencies that are
present in the hardware and operating system
of the Cray T3D. The protocol for longer mes-
sages can be simplified, which means there is
less overhead for sending and receiving mes-
sages. The code in the T3D device that was
needed to work around the addressing and
cache coherency deficiencies of that platform
is no longer required for the T3E. The device
code for the T3E becomes the idealistic device
code for the T3D. Of course, the added per-
formance of the T3E interconnection network
increases overall performance, but the simpli-
fication and optimization of the protocol and
progress engine improve the efficiency of the
port.

This port also obeys the progress rule of
the MPI Standard [8] more closely than other
ports. Because the receiver of the message ac-
tually initiates and completes the data trans-
fer, computation can truly overlap communica-
tion on the send side of the message. The re-
ceiver, however, has more relaxed conformance
of the progress rule because MPICH library
code must be executing before data is actu-
ally transferred. Still, progress can be made
even without a specific call to MPI_Wait or
MPI Test, even on the receiving process.

In actuality, these optimizations also add an-
other, possibly overlooked, benefit to the T3E
device code. Because the message passing pro-
tocol is greatly simplified and because some
of the code in the T3D device was in place
to work around architectural deficiencies, the
T3E device code is smaller and less compli-
cated than the T3D device code. This means
that there is less code to write and the code
that is written is easier to debug and maintain
for the T3E with the added benefit of lower
overhead, higher performance message passing
code. This is a win-win situation for the devel-
opers, maintainers, and ultimately, the users of
the MSU Cray T3E port for MPICH.

The MSU Cray T3E MPICH port

is available via WWW web page at
http://www.erc.msstate.edu/mpi/mpich-
t3e.html or by contacting the authors via
email.

5 Future Work

For MPICH, the first, most direct optimiza-
tions are to the point-to-point communica-
tion infrastructure which are detailed here. In
MPICH, the collective communication func-
tionality is implemented algorithmically us-
ing the point-to-point functionality. =~ With
these optimizations, collective communication
should also see increases in performance. How-
ever, the Cray T3E also offers native collec-
tive communication primitives with optimiza-
tions over those of the T3D. Future work on
the T3E could include optimizing the collec-
tive communication routines to use the high-
performance native collective communication
primitives whenever possible.

Another area for future work is optimiza-
tion of the MPI broadcast functionality for
the T3E’s torus interconnect. Since the T3E’s
torus interconnect is actually a 3-D mesh, some
performance gains may be realized. Work in
this area has already been published and can
be used for this effort [9, 10].

As mentioned before, there are penalties for
MPI messages that are not aligned on 32-bit
addresses and for those that are not multiples
of 32-bits in length. There are techniques that
can be used to minimize these penalties which
are not included in this port. Future work
could be to optimize these types of messages
as well.

Extensions to the MPI Standard [1] included
in the MPI-2 Standard [11] are ideally suited
to distributed shared-memory architectures.
However, the MPICH source base with the de-
vice code reported here is not a direct path
to MPI-2. The MPI-2 Standard incorporates
several functionality chapters that would re-
quire major modifications to the entire MPICH
source base. This effort would best be served
by creating a new source base but in either

case, would require an extensive design effort
and implementation team to achieve good per-
formance and minimize complexity of the code.

6 Acknowledgements
This work was supported in part by a grant of
HPC time from the DoD HPC Modernization
Program.
References
[1] Message Passing Interface Forum. MPI:
A Message-Passing Interface Standard,

1994. http://www.mcs.anl.gov/mpi.

[2] Argonne National Lab and Missis-

sippi State University. MPICH:
A Portable Implementation of
MPI. Software, April 1997.

http://www.mcs.anl.gov/mpi/mpich.

[3] Ron Brightwell and Anthony Skjellum.
MPICH on the T3D: A Case Study of
High Performance Message Passing. In
Proceedings of the Second MPI Devel-
oper’s Conference, pages 2-9, July 1996.

[4] Ohio Supercomputing Cen-
ter. LAM. Software, 1996.
http://www.osc.edu/lam.html.

[5] EPCC. CHIMP. Software, 1996.
ftp://www.epcc.ed.ac.uk/chimp/release.

[6] The Cray T3E Series: The Per-
fect System for Highly Scalable
Applications. WWW Page, 1997.
http://www.cray.com/products/
systems/crayt3e.

[7] Digital Equipment Corporation. WWW
Pages, 1998. http://www.digital.com.

[8] Message Passing Interface Forum. MPI:
A Message-Passing Interface Standard,
1994. Section 3.7.4.

[9]

[10]

[11]

M. Barnett, D. Payne, R. van de
Geijn, and J. Watts. Broadcast-
ing on meshes with wormhole rout-
ing. Journal of Parallel and Dis-
tributed Computing, 35(2):111-122, 1996.
http://www.cs.utexas.edu/users/rvdg/
papers/meshbc.ps.

Jerrell Watts and Robert van de Geijn.
A pipelined broadcast for multidimen-

sional meshes. Parallel Processing Letters,
5(2):281-292, 1995.

MPI-2 Forum. MPI-2: Eztensions to
the Message Passing Interface, 1997.
http://www.mpi-forum.org/docs/
mpi-20-html/mpi2-report.html.

